References

1.
Lewins R. Injection of Saline Solutions into the Veins. BOSTON MEDICAL AND SURGICAL JOURNAL. 1832;VI(24):373-374.
2.
Latta T. MALIGNANT CHOLERA.: DOCUMENTS COMMUNICATED BY THE CENTRAL BOARD OF HEALTH, LONDON, RELATIVE TO THE TREATMENT OF CHOLERA BY THE COPIOUS INJECTION OF AQUEOUS AND SALINE FLUIDS INTO THE VEINS. The Lancet. 1832;18(457):274-280. doi:10.1016/S0140-6736(02)80289-6
3.
Cosnett JE. The origins of intravenous fluid therapy. Lancet (London, England). 1989;1(8641):768-771. doi:10.1016/s0140-6736(89)92583-x
4.
Petroianu GA. On saline infusion, clonus, molecules and forgotten scientists: Who was Dr Julius Sander (1840)? Journal of Medical Biography. Published online December 2021:09677720211065357. doi:10.1177/09677720211065357
5.
Foëx BA. How the cholera epidemic of 1831 resulted in a new technique for fluid resuscitation. Emergency Medicine Journal. 2003;20(4):316-318. doi:10.1136/emj.20.4.316
6.
Kadet A. House Calls for Hangovers. Wall Street Journal. Published online August 2015.
7.
Miller TE, Myles PS. Perioperative Fluid Therapy for Major Surgery. Anesthesiology. 2019;130(5):825-832. doi:10.1097/ALN.0000000000002603
8.
Monnet X, Teboul JL. My patient has received fluid. How to assess its efficacy and side effects? Annals of Intensive Care. 2018;8(1):54. doi:10.1186/s13613-018-0400-z
9.
Bhave G, Neilson EG. Volume Depletion Versus Dehydration: How Understanding the Difference Can Guide Therapy. American Journal of Kidney Diseases. 2011;58(2):302-309. doi:10.1053/j.ajkd.2011.02.395
10.
Jacob M, Chappell D, Rehm M. The ’third space’–fact or fiction? Best Practice & Research Clinical Anaesthesiology. 2009;23(2):145-157. doi:10.1016/j.bpa.2009.05.001
11.
Coe Aj, Revanäs B. Is crystalloid preloading useful in spinal anaesthesia in the elderly? Anaesthesia. 1990;45(3):241-243. doi:10.1111/j.1365-2044.1990.tb14696.x
12.
Smith I, Kranke P, Murat I, et al. Perioperative fasting in adults and children: Guidelines from the European Society of Anaesthesiology. European Journal of Anaesthesiology | EJA. 2011;28(8):556-569. doi:10.1097/EJA.0b013e3283495ba1
13.
Myburgh JA, Mythen MG. Resuscitation Fluids. New England Journal of Medicine. 2013;369(13):1243-1251. doi:10.1056/NEJMra1208627
14.
Hoste EA, Maitland K, Brudney CS, et al. Four phases of intravenous fluid therapy: A conceptual model. British journal of anaesthesia. 2014;113(5):740-747. doi:10.1093/bja/aeu300
15.
Malbrain MLNG, Langer T, Annane D, et al. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA). Annals of Intensive Care. 2020;10(1):64. doi:10.1186/s13613-020-00679-3
16.
Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl Starch 130/0.42 versus Ringer’s Acetate in Severe Sepsis. New England Journal of Medicine. 2012;367(2):124-134. doi:10.1056/NEJMoa1204242
17.
Frank O. On the dynamics of cardiac muscle (1959 translation of Zur dynamik des Herzmuskels). American Heart Journal. 1895;58(2):282-317. doi:10.1016/0002-8703(59)90345-X
18.
Patterson SW, Piper H, Starling EH. The regulation of the heart beat. The Journal of Physiology. 1914;48(6):465-513. doi:10.1113/jphysiol.1914.sp001676
19.
Zimmer HG. Who Discovered the Frank-Starling Mechanism? Physiology. 2002;17(5):181-184. doi:10.1152/nips.01383.2002
20.
Boron WF, Boulpaep EL. The Heart as a Pump. In: Medical Physiology. Third edition. Elsevier Health Sciences; 2016.
21.
Magder S. Volume and its relationship to cardiac output and venous return. Critical Care. 2016;20(1):1-11. doi:10.1186/s13054-016-1438-7
22.
Persichini R, Lai C, Teboul JL, Adda I, Guérin L, Monnet X. Venous return and mean systemic filling pressure: Physiology and clinical applications. Critical Care. 2022;26(1):150. doi:10.1186/s13054-022-04024-x
23.
Guyton AC, Lindsey AW, Abernathy B, Richardson T. Venous Return at Various Right Atrial Pressures and the Normal Venous Return Curve. American Journal of Physiology-Legacy Content. 1957;189(3):609-615. doi:10.1152/ajplegacy.1957.189.3.609
24.
Permutt S, Riley RL. Hemodynamics of Collapsible Vessels With Tone: The Vascular Waterfall. Journal of applied physiology (Bethesda, Md : 1985). 1963;18:924-932. doi:10.1152/jappl.1963.18.5.924
25.
Wong F, Sniderman K, Liu P, Allidina Y, Sherman M, Blendis L. Transjugular intrahepatic portosystemic stent shunt: Effects on hemodynamics and sodium homeostasis in cirrhosis and refractory ascites. Annals of Internal Medicine. 1995;122(11):816-822. doi:10.7326/0003-4819-122-11-199506010-00002
26.
Dunn JO, Mythen M, Grocott M. Physiology of oxygen transport. BJA Education. 2016;16(10):341-348. doi:10.1093/bjaed/mkw012
27.
Boron WF, Boulpaep EL. The Microcirculation. In: Medical Physiology. Third edition. Elsevier Health Sciences; 2016.
28.
Weinbaum S, Tarbell JM, Damiano ER. The Structure and Function of the Endothelial Glycocalyx Layer. Annual Review of Biomedical Engineering. 2007;9(1):121-167. doi:10.1146/annurev.bioeng.9.060906.151959
29.
Milford EM, Reade MC. Resuscitation Fluid Choices to Preserve the Endothelial Glycocalyx. Critical Care. 2019;23(1):1-11. doi:10.1186/s13054-019-2369-x
30.
Chappell D, Bruegger D, Potzel J, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Critical Care. 2014;18(5):1-8. doi:10.1186/s13054-014-0538-5
31.
Damén T, Kolsrud O, Dellgren G, Hesse C, Ricksten SE, Nygren A. Atrial natriuretic peptide does not degrade the endothelial glycocalyx: A secondary analysis of a randomized porcine model. Acta Anaesthesiologica Scandinavica. 2021;65(9):1305-1312. doi:10.1111/aas.13853
32.
Iba T, Levy JH. Derangement of the endothelial glycocalyx in sepsis. Journal of Thrombosis and Haemostasis. 2019;17(2):283-294. doi:10.1111/jth.14371
33.
Hahn RG, Lyons G. The half-life of infusion fluids: An educational review. European Journal of Anaesthesiology | EJA. 2016;33(7):475-482. doi:10.1097/EJA.0000000000000436
34.
Myles PS, Bellomo R, Corcoran T, et al. Restrictive versus Liberal Fluid Therapy for Major Abdominal Surgery. New England Journal of Medicine. 2018;378(24):2263-2274. doi:10.1056/NEJMoa1801601
35.
Brandstrup B. Finding the Right Balance. New England Journal of Medicine. 2018;378(24):2335-2336. doi:10.1056/NEJMe1805615
36.
Pearse RM, Harrison DA, MacDonald N, et al. Effect of a Perioperative, Cardiac Output on Outcomes Following Major Gastrointestinal Surgery: A Randomized Clinical Trial and Systematic Review. JAMA. 2014;311(21):2181-2190. doi:10.1001/jama.2014.5305
37.
Jessen MK, Vallentin MF, Holmberg MJ, et al. Goal-directed haemodynamic therapy during general anaesthesia for noncardiac surgery: A systematic review and meta-analysis. British Journal of Anaesthesia. 2022;128(3):416-433. doi:10.1016/j.bja.2021.10.046
38.
Edwards MR, Forbes G, MacDonald N, et al. Optimisation of Perioperative Cardiovascular Management to Improve Surgical Outcome II (OPTIMISE II) trial: Study protocol for a multicentre international trial of cardiac output-guided fluid therapy with low-dose inotrope infusion compared with usual care in patients undergoing major elective gastrointestinal surgery. BMJ Open. 2019;9(1):e023455. doi:10.1136/bmjopen-2018-023455
39.
Marik PE, Cavallazzi R. Does the Central Venous Pressure Predict Fluid Responsiveness? An Updated Meta-Analysis and a Plea for Some Common Sense*. Critical Care Medicine. 2013;41(7):1774-1781. doi:10.1097/CCM.0b013e31828a25fd
40.
Monnet X, Letierce A, Hamzaoui O, et al. Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine*. Critical Care Medicine. 2011;39(6):1394-1399. doi:10.1097/CCM.0b013e31820edcf0
41.
De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: Influence of tidal volume. Intensive Care Medicine. 2005;31(4):517-523. doi:10.1007/s00134-005-2586-4
42.
Monnet X, Teboul JL. Passive leg raising: Five rules, not a drop of fluid! Critical Care. 2015;19(1):1-3. doi:10.1186/s13054-014-0708-5
43.
Muller L, Toumi M, Bousquet PJ, et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: The mini-fluid challenge study. Anesthesiology. 2011;115(3):541-547. doi:10.1097/ALN.0b013e318229a500
44.
Messina A, Dell’Anna A, Baggiani M, et al. Functional hemodynamic tests: A systematic review and a metanalysis on the reliability of the end-expiratory occlusion test and of the mini-fluid challenge in predicting fluid responsiveness. Critical Care. 2019;23(1):264. doi:10.1186/s13054-019-2545-z
45.
Vistisen ST, Enevoldsen JN, Greisen J, Juhl-Olsen P. What the anaesthesiologist needs to know about heart-lung interactions. Best Practice & Research Clinical Anaesthesiology. Published online 2019. doi:10.1016/j.bpa.2019.05.003
46.
Michard F. Changes in Arterial Pressure during Mechanical Ventilation. Anesthesiology. 2005;103(2):419-428. doi:10.1097/00000542-200508000-00026
47.
Chemla D, Hebert JL, Coirault C, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. American Journal of Physiology. 1998;274(2 Pt 2):H500-H505. doi:10.1152/ajpheart.1998.274.2.H500
48.
Perel A, Pizov R, Cotev S. Systolic Blood Pressure Variation is a Sensitive Indicator of Hypovolemia in Ventilated Dogs Subjected to Graded Hemorrhage. Anesthesiology. 1987;67(4):498-502. doi:10.1097/00000542-198710000-00009
49.
50.
Coriat P, Vrillon M, Perel A, et al. A Comparison of Systolic Blood Pressure Variations and Echocardiographic Estimates of End-Diastolic Left Ventricular Size in Patients After Aortic Surgery. Anesthesia & Analgesia. 1994;78(1):46-53.
51.
Rooke GA, Schwid HA, Shapira Y. The Effect of Graded Hemorrhage and Intravascular Volume Replacement on Systolic Pressure Variation in Humans During Mechanical and Spontaneous Ventilation. Anesthesia & Analgesia. 1995;80(5):925-932.
52.
Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic Pressure Variation as a Guide to Fluid Therapy in Patients with Sepsis-induced Hypotension. Anesthesiology. 1998;89(6):1313-1321. doi:10.1097/00000542-199812000-00007
53.
Michard F, Chemla D, Richard C, et al. Clinical Use of Respiratory Changes in Arterial Pulse Pressure to Monitor the Hemodynamic Effects of PEEP. American Journal of Respiratory and Critical Care Medicine. 1999;159(3):935-939. doi:10.1164/ajrccm.159.3.9805077
54.
Michard F, Boussat S, Chemla D, et al. Relation between Respiratory Changes in Arterial Pulse Pressure and Fluid Responsiveness in Septic Patients with Acute Circulatory Failure. American Journal of Respiratory and Critical Care Medicine. 2000;162(1):134-138. doi:10.1164/ajrccm.162.1.9903035
55.
Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: A systematic review of the literature. Critical Care Medicine. 2009;37(9):2642-2647. doi:10.1097/CCM.0b013e3181a590da
56.
Teboul JL, Monnet X, Chemla D, Michard F. Arterial Pulse Pressure Variation with Mechanical Ventilation. American Journal of Respiratory and Critical Care Medicine. 2018;199(1):rccm.201801-0088CI. doi:10.1164/rccm.201801-0088CI
57.
De Backer D, Ph D, Taccone FS, et al. Influence of Respiratory Rate on Stroke Volume Variation in Mechanically Ventilated Patients. Anesthesiology. 2009;110:1092-1097. doi:10.1097/ALN.0b013e31819db2a1
58.
Monnet X, Bleibtreu A, Ferré A, et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance*. Critical Care Medicine. 2012;40(1):152-157. doi:10.1097/CCM.0b013e31822f08d7
59.
Michard F, Chemla D, Teboul JL. Applicability of pulse pressure variation: How many shades of grey? Critical Care. 2015;19(1):15-17. doi:10.1186/s13054-015-0869-x
60.
Wyffels PAH, De Hert S, Wouters PF. New algorithm to quantify cardiopulmonary interaction in patients with atrial fibrillation: A proof-of-concept study. British Journal of Anaesthesia. 2021;126(1):111-119. doi:10.1016/j.bja.2020.09.039
61.
Magder S. Clinical Usefulness of Respiratory Variations in Arterial Pressure. American Journal of Respiratory and Critical Care Medicine. 2004;169(2):151-155. doi:10.1164/rccm.200211-1360CC
62.
Monnet X, Shi R, Teboul JL. Prediction of fluid responsiveness. What’s new? Annals of Intensive Care. 2022;12(1):46. doi:10.1186/s13613-022-01022-8
63.
Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Critical Care Medicine. 2009;37(3):951-956. doi:10.1097/CCM.0b013e3181968fe1
64.
Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The Changes in Pulse Pressure Variation or Stroke Volume Variation After a Tidal Volume Challenge Reliably Predict Fluid Responsiveness During Low Tidal Volume Ventilation*. Critical Care Medicine. 2017;45(3):415-421. doi:10.1097/CCM.0000000000002183
65.
Biais M, Larghi M, Henriot J, de Courson H, Sesay M, Nouette-Gaulain K. End-Expiratory Occlusion Test Predicts Fluid Responsiveness in Patients With Protective Ventilation in the Operating Room. Anesthesia & Analgesia. 2017;125(6):1889-1895. doi:10.1213/ANE.0000000000002322
66.
Alvarado Sánchez JI, Caicedo Ruiz JD, Diaztagle Fernández JJ, Amaya Zuñiga WF, Ospina-Tascón GA, Cruz Martínez LE. Predictors of fluid responsiveness in critically ill patients mechanically ventilated at low tidal volumes: Systematic review and meta-analysis. Annals of Intensive Care. 2021;11(1):28. doi:10.1186/s13613-021-00817-5
67.
Xu Y, Guo J, Wu Q, Chen J. Efficacy of using tidal volume challenge to improve the reliability of pulse pressure variation reduced in low tidal volume ventilated critically ill patients with decreased respiratory system compliance. BMC anesthesiology. 2022;22(1):137. doi:10.1186/s12871-022-01676-8
68.
Smorenberg A, Cherpanath TGV, Geerts BF, et al. A mini-fluid challenge of 150 mL predicts fluid responsiveness using Modelflow R pulse contour cardiac output directly after cardiac surgery. Journal of Clinical Anesthesia. 2018;46:17-22. doi:10.1016/j.jclinane.2017.12.022
69.
Biais M, de Courson H, Lanchon R, et al. Mini-fluid Challenge of 100 ml of Crystalloid Predicts Fluid Responsiveness in the Operating Room: Anesthesiology. 2017;127(3):450-456. doi:10.1097/ALN.0000000000001753
70.
Wu Y, Zhou S, Zhou Z, Liu B. A 10-second fluid challenge guided by transthoracic echocardiography can predict fluid responsiveness. Critical Care. 2014;18(3):R108. doi:10.1186/cc13891
71.
Ali A, Dorman Y, Abdullah T, et al. Ability of mini-fluid challenge to predict fluid responsiveness in obese patients undergoing surgery in the prone position. Minerva Anestesiologica. 2019;85(9):981-988. doi:10.23736/S0375-9393.19.13276-2
72.
Mukhtar A, Awad M, Elayashy M, et al. Validity of mini-fluid challenge for predicting fluid responsiveness following liver transplantation. BMC Anesthesiology. 2019;19(1):56. doi:10.1186/s12871-019-0728-4
73.
Lee CT, Lee TS, Chiu CT, Teng HC, Cheng HL, Wu CY. Mini-fluid challenge test predicts stroke volume and arterial pressure fluid responsiveness during spine surgery in prone position: A STARD-compliant diagnostic accuracy study. Medicine. 2020;99(6):e19031. doi:10.1097/MD.0000000000019031
74.
Fot EV, Izotova NN, Smetkin AA, Kuzkov VV, Kirov MY. Dynamic Tests to Predict Fluid Responsiveness After Off-Pump Coronary Artery Bypass Grafting. Journal of Cardiothoracic and Vascular Anesthesia. 2020;34(4):926-931. doi:10.1053/j.jvca.2019.09.013
75.
Messina A, Lionetti G, Foti L, et al. Mini fluid chAllenge aNd End-expiratory occlusion test to assess flUid responsiVEness in the opeRating room (MANEUVER study): A multicentre cohort study. European Journal of Anaesthesiology | EJA. 2021;38(4):422-431. doi:10.1097/EJA.0000000000001406
76.
Archie J. Mathematic Coupling of Data: A Common Source of Error. Annals of Surgery. 1981;193(3):296-303.
77.
Stratton HH, Feustel PJ, Newell JC. Regression of calculated variables in the presence of shared measurement error. Journal of Applied Physiology. 1987;62(5):2083-2093. doi:10.1152/jappl.1987.62.5.2083
78.
Hastie T, Tibshirani R. Generalized Additive Models. Statistical Science. 1986;1(3):297-318.
79.
Wood SN. Generalized Additive Models: An Introduction with R. Second. Chapman and Hall/CRC; 2017. doi:10.1201/9781315370279
80.
Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society Series B (Statistical Methodology). 2011;73(1):3-36.
81.
Network TARDS. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. The New England Journal of Medicine. Published online 2000:8.
82.
Kovacs G, Herve P, Barbera JA, et al. An official European Respiratory Society statement: Pulmonary haemodynamics during exercise. European Respiratory Journal. 2017;50(5). doi:10.1183/13993003.00578-2017
83.
McKenzie SC, Dunster K, Chan W, et al. Reliability of thermodilution derived cardiac output with different operator characteristics. Journal of Clinical Monitoring and Computing. 2018;32(2):227-234. doi:10.1007/s10877-017-0010-6
84.
Joosten A, Desebbe O, Suehiro K, et al. Accuracy and precision of non-invasive cardiac output monitoring devices in perioperative medicine: A systematic review and meta-analysis. British Journal of Anaesthesia. 2017;118(3):298-310. doi:10.1093/bja/aew461
85.
Montenij LJ, Buhre WF, Jansen JR, Kruitwagen CL, de Waal EE. Methodology of method comparison studies evaluating the validity of cardiac output monitors: A stepwise approach and checklist is accompanied by Editorial Aew110. British Journal of Anaesthesia. 2016;116(6):750-758. doi:10.1093/bja/aew094
86.
Slagt C, Malagon I, Groeneveld ABJ. Systematic review of uncalibrated arterial pressure waveform analysis to determine cardiac output and stroke volume variation. British Journal of Anaesthesia. 2014;112(4):626-637. doi:10.1093/bja/aet429
87.
Geisen M, Ganter MT, Hartnack S, Dzemali O, Hofer CK, Zollinger A. Accuracy, Precision, and Trending of 4 Pulse Wave Analysis Techniques in the Postoperative Period. Journal of Cardiothoracic and Vascular Anesthesia. 2018;32(2):715-722. doi:10.1053/j.jvca.2017.09.006
88.
Heijne A, Krijtenburg P, Bremers A, Scheffer GJ, Malagon I, Slagt C. Four different methods of measuring cardiac index during cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Korean Journal of Anesthesiology. 2020;74(2):120-133. doi:10.4097/kja.20202
89.
Murata Y, Imai T, Takeda C, Mizota T, Kawamoto S. Agreement between continuous cardiac output measured by the fourth-generation FloTrac/Vigileo system and a pulmonary artery catheter in adult liver transplantation. Scientific Reports. 2022;12(1):11198. doi:10.1038/s41598-022-14988-z
90.
Eisenried A, Klarwein R, Ihmsen H, et al. Accuracy and Trending Ability of the Fourth-Generation FloTrac/EV1000 System in Patients With Severe Aortic Valve Stenosis Before and After Surgical Valve Replacement. Journal of Cardiothoracic and Vascular Anesthesia. 2019;33(5):1230-1236. doi:10.1053/j.jvca.2018.09.015
91.
Suehiro K, Tanaka K, Mikawa M, et al. Improved Performance of the Fourth-Generation FloTrac/Vigileo System for Tracking Cardiac Output Changes. Journal of Cardiothoracic and Vascular Anesthesia. 2015;29(3):656-662. doi:10.1053/j.jvca.2014.07.022
92.
Maeda T, Hamaguchi E, Kubo N, Shimokawa A, Kanazawa H, Ohnishi Y. The accuracy and trending ability of cardiac index measured by the fourth-generation FloTrac/Vigileo system and the Fick method in cardiac surgery patients. Journal of Clinical Monitoring and Computing. 2019;33(5):767-776. doi:10.1007/s10877-018-0217-1
93.
Narang N, Thibodeau JT, Grodin JL, Garg S, McGuire DK, Drazner MH. Thermodilution Cardiac Index Has Poor Agreement with That Measured by the Direct Fick Method in Low-Output States. The Journal of Heart and Lung Transplantation. 2021;40(4, Supplement):S269. doi:10.1016/j.healun.2021.01.766
94.
Narang N, Thibodeau JT, Parker WF, et al. Comparison of Accuracy of Estimation of Cardiac Output by Thermodilution Versus the Fick Method Using Measured Oxygen Uptake. The American Journal of Cardiology. 2022;176:58-65. doi:10.1016/j.amjcard.2022.04.026
95.
McElreath R. Statistical Rethinking: A Bayesian Course with Examples in R and STAN. CRC Press; 2020.
96.
Gelman A, Greenland S. Are confidence intervals better termed “uncertainty intervals”? BMJ. 2019;366:l5381. doi:10.1136/bmj.l5381
97.
Guinot PG, Bernard E, Defrancq F, et al. Mini-fluid challenge predicts fluid responsiveness during spontaneous breathing under spinal anaesthesia: An observational study. European Journal of Anaesthesiology. 2015;32(9):645-649. doi:10.1097/EJA.0000000000000175
98.
Raut MS, Maheshwari A. “X” descent of CVP: An indirect measure of RV dysfunction ? Journal of Anaesthesiology, Clinical Pharmacology. 2014;30(3):430-431. doi:10.4103/0970-9185.137289
99.
Abdullah T. Short time low PEEP challenge and mini fluid challenge to evaluate fluid responsiveness in the operating room. Journal Of Cardıo-Vascular-Thoracıc Anaesthesıa And Intensıve Care Socıety. Published online 2022. doi:10.14744/GKDAD.2022.04900
100.
Arheden H, Holmqvist C, Thilen U, et al. Left-to-Right Cardiac Shunts: Comparison of Measurements Obtained with MR Velocity Mapping and with Radionuclide Angiography. Radiology. 1999;211(2):453-458. doi:10.1148/radiology.211.2.r99ma43453
101.
Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ : British Medical Journal. 2006;332(7549):1080.
102.
Tu YK, Gilthorpe MS. Revisiting the relation between change and initial value: A review and evaluation. Statistics in Medicine. 2007;26(2):443-457. doi:10.1002/sim.2538
103.
Enevoldsen J, Scheeren TWL, Berg JM, Vistisen ST. Existing fluid responsiveness studies using the mini-fluid challenge may be misleading: Methodological considerations and simulations. Acta Anaesthesiologica Scandinavica. 2022;(66):7-24. doi:10.1111/aas.13965
104.
Törnqvist L, Vartia P, Vartia YO. How Should Relative Changes be Measured? The American Statistician. 1985;39(1):43-46. doi:10.1080/00031305.1985.10479385
105.
Høiseth LØ, Hagemo JS. Predicting fluid responsiveness in whom? A simulated example of patient spectrum influencing the receiver operating characteristics curve. Journal of Clinical Monitoring and Computing. 2018;32(2):215-219. doi:10.1007/s10877-017-0019-x
106.
Feissel M, Teboul JL, Merlani P, Badie J, Faller JP, Bendjelid K. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Medicine. 2007;33(6):993-999. doi:10.1007/s00134-007-0602-6
107.
Cannesson M, Attof Y, Rosamel P, et al. Respiratory Variations in Pulse Oximetry Plethysmographic Waveform Amplitude to Predict Fluid Responsiveness in the Operating Room. Anesthesiology. 2007;106(6):1105-1111. doi:10.1097/01.anes.0000267593.72744.20